首页> 外文OA文献 >Fast evaluation of solid harmonic Gaussian integrals for local resolution-of-the-identity methods and range-separated hybrid functionals
【2h】

Fast evaluation of solid harmonic Gaussian integrals for local resolution-of-the-identity methods and range-separated hybrid functionals

机译:局部场强固体谐波高斯积分的快速评估   身份识别方法和范围分离的混合功能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An integral scheme for the efficient evaluation of two-center integrals overcontracted solid harmonic Gaussian functions is presented. Integral expressionsare derived for local operators that depend on the position vector of one ofthe two Gaussian centers. These expressions are then used to derive the formulafor three-index overlap integrals where two of the three Gaussians are locatedat the same center. The efficient evaluation of the latter is essential forlocal resolution-of-the-identity techniques that employ an overlap metric. Wecompare the performance of our integral scheme to the widely used CartesianGaussian-based method of Obara and Saika (OS). Non-local interaction potentialssuch as standard Coulomb, modified Coulomb and Gaussian-type operators, thatoccur in range-separated hybrid functionals, are also included in theperformance tests. The speed-up with respect to the OS scheme is up to threeorders of magnitude for both, integrals and their derivatives. In particular,our method is increasingly efficient for large angular momenta and highlycontracted basis sets.
机译:提出了一种有效评估两中心积分超压缩固体谐波高斯函数的积分方案。为依赖于两个高斯中心之一的位置向量的局部算子派生了积分表达式。然后,这些表达式用于推导三个索引重叠积分的公式,其中三个高斯中的两个位于同一中心。后者的有效评估对于采用重叠度量的本地身份解决技术至关重要。我们将积分方案的性能与广泛使用的基于笛卡尔高斯的Obara和Saika(OS)方法进行比较。性能测试中还包括非局部相互作用的可能性,例如标准的库仑,改进的库仑和高斯型算子,它们发生在范围分隔的混合功能中。相对于OS方案,积分及其导数的速度最高可提高三个数量级。特别是,对于大的角矩和高度收缩的基集,我们的方法越来越有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号